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Influence of a periodic field on two-level classical systems

V. Berdichevsky and M. Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 18 September 1998!

An external periodic field is able to change the asymptotic values of the populations of two asymmetric
energy levels in a bistable potential tending to equalize the populations of the discrete levels, or even to reverse
the populations for space-extended systems. The population of the oscillating well can either decrease or
increase compared with the field-free case, depending on the frequency of the external field.
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PACS number~s!: 05.40.2a, 05.60.2k, 05.70.Ln
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The investigation of nonlinear dynamical systems sub
to a periodic and/or random field has attracted consider
interest. Recent reviews describe different, quite complica
models and their applications to many physical, chemi
and biological systems@1–3#. In this Rapid Communication
we consider discrete and space-extended two-level asym
ric systems where, in contrast to the usual approach,
probabilities of the transitions 1→2 and 2→1 are different,
i.e., in the absence of an external field, the two levels h
nonequal populations ast→`.

Although the effect of potential asymmetry on stochas
resonance has been considered earlier@2#, the problem of the
changes in populations in the presence of an external
remain unsolved, and this is the subject of our study. It tu
out that, in addition to periodic changes of the populatio
an external periodic field tends to equalize the population
the two levels ast→`, stabilizing the lower ‘‘metastable’’
level or even reversing the populations of these levels. Mo
over, the populations are nonmonotonic functions of the
quency of the external field.

The simplest model of a system that can be found eit
in the ‘‘left’’ ~populationn1), or in the ‘‘right’’ ~population
n2) states, wheren11n251, has many applications in sc
ence, and has been considered repeatedly in the litera
Our approach is close to that of Refs.@5,6# with the essential
difference lying in the assumption that, say, the left state
less stable, i.e., the potential barrierU1 for transmission to
the right state is lower thanU2 for the reverse transition
U1,U2.

The rate equation describing the dynamics of a two-s
system has the following form:

dn1

dt
52

dn2

dt
5W2n22W1n15W22~W11W2!n1, ~1!

whereW1(2) is the transition rate out of state1(2), and is
assumed to have the simple Arrhenius form.

In the absence of an external field, one finds fort→`,
when the initial conditions are washed out

n1,̀ 5
W2

o

W1
o1W2

o
; n2,̀ 5

W1
o

W1
o1W2

o
;

~2!
W1

0[e2 ~U1/D !; W2
o[e2 ~U2/D !
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i.e., n1,̀ ,n2,̀ — the left ‘‘shallow’’ state contains fewer
particles than the right ‘‘deep’’ state. In Eq.~2! we neglect
the possible change of prefactors in exponentials due
asymmetry.

The influence of the external periodic field is usually d
scribed by the modulation of the potential well, i.e.,U1 is
replaced byU11A cos(Vt), andU2, by U22A cos(Vt). We
accept this assumption hereafter.

Substituting the modulated barrier heights inside the r
equation~1!, one concludes that, after a transient period,
solution of this equation becomes periodic in time:

n15n1,̀ 1(
m

@Amcos~mVt !1Bmsin~mVt !#

5n1,̀ 1(
m

AAm
2 1Bm

2 sin~mVt1fm!. ~3!

Substituting Eq. ~3! and the expansion o
exp„6@Acos(Vt)#/D… in a series of modified Bessel function
of the first kind@4# into Eq. ~1!, one can find recursive rela
tions for n1,̀ , Am , and Bm , as has been done for simila
problems @5,6#. Truncating the recursive relations atm
50,1,2 . . . , oneobtains a set of coefficients in Eq.~3! that
corresponds to increasing powers of (A/D), i.e., of the am-
plitude of the external field. Omitting the straightforward ca
culations, one finds the following results to the lowest ord
in the field amplitude, i.e., to first order forA1 andB1, and to
second order forn1,̀ :

n1,̀ 5
W2

0

W1
01W2

0
1

A2

D2

W1
0W2

0

V21~W1
01W2

0!2

W1
02W2

0

W1
01W2

0
,

~4!

AA1
21B1

25
2AW1

oW2
o

D~W1
o1W2

o!@V21~W1
o1W2

o!2#1/2
.

In all previous analyses~@5,6# and others!, two stable
states (W1

05W2
0) have been considered and the limitingt

→`) values ofn1,̀ ,n2,̀ did not change in the presence
an external periodic field. The only influence of this field w
to produce a periodic change of the population of the t
states described by the coefficientsAm andBm in Eq. ~3!.

As one can see from Eq.~4!, in the presence of a field, th
field-free expression forn1,̀ is augmented by an additiona
R9 ©1999 The American Physical Society
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positive term~sinceW1
0.W2

0). One can show that more pos
tive terms will come from the next-order corrections
(A/D). Thus, one finds that the less stable state becom
‘‘more stable’’ in the presence of an external periodic fiel
In fact, this field not only equalizes the populations of th
two states; under some circumstances~see below!, it can
even reverse them.

The second conclusion, which follows from Eq.~4!, is
that the amplitude of the oscillations (A1

21B1
2)1/2 is mono-

tonic as a function of the external field frequencyV, but
nonmonotonic as a function of the noise strengthD ~stochas-
tic resonance@2#!.

We now turn to space-extended systems and, as an
ample, consider a particle moving in the piecewise doub
well potential U(x) under the influence of white noise. In
addition, we assume that the left well is subject to an ext
nal periodic field, as shown in Fig. 1, where the length
expressed in arbitrary units.

The Fokker-Planck equation for the probability functio
P(x,t) for the positionx of a diffusive particle at the timet
is

]P

]t
5

]

]xS ]U

]x
P1D

]P

]x D[2
]J

]x
, ~5!

where the probability currentJ is defined in Eq.~5!.
For the potentialsU(x) shown in Fig. 1, everywere excep

at matching points,]U/]x50 and Eq. ~5! reduces to a
simple diffusion equation. Moreover, our choice for the p
riodic signal does not introduce an additional force in E
~5!, which still maintains the form of a simple diffusion
equation. However, the periodic signal enters the match
conditions, namely, one has to solve Eq.~5! in each region of
U(x)5 const, and then ensure the continuity ofP andJ on
the boundaries of these regions. The matching conditi
have to be complemented by reflected boundary conditi
at the walls.

Our main assumption is the smallness of the amplitude
the external field, which means (A/D),1, and accordingly
we seek the solution of Eq.~5! in each regionm as

Pm5Sm1(
l 51

` S A

D D l

f m
~ l !~x,t !, ~6!

wheref m
( l ) is a periodic function oft, which can be written in

the following form:

f m
~ l !5 f m,0

~ l ! 1 (
k51

`

@~ f m,k
~ l ! er kx1 f̃ m,k

~ l ! e2r kx!eiVkt1c.c.#,

~7!

FIG. 1. Square double-well potential with an oscillating le
well.
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We keep only the lowest nonvanishing corrections to
field-free asymptotic probabilitiesSm in the amplitude of the
external field. Due to the boundary conditions, to the fi
order in the field, the time-independent corrections van
and so we also keep the nonoscillating second-order term
(A/D). An expansion of exp„6@A cos(Vt)#/D… up to first
order in (A/D) will influence only thek51 terms in Eq.~7!,
which take the following form

Pm5Sm1
A

D
@~ f merx1 f̃ me2rx!eiVt1c.c.#1S A

D D 2

gm .

~8!

Equation ~8! contains twelve parameter
(Sm , f m , f̃ m,gm ; m51,2,3) that satisfy twelve equation
@two on the wells and two on each of two boundaries
each order in the small parameter (A/D)]. We will present
the full solution elsewhere. Here we restrict our consid
ation to the time-independent populations@up to the second
order in (A/D)2] of the right ,nr ,` , and the left~oscillating!,
n

l ,`, wells:

nl ,`5E
21

0

P1~x,t !dx5S11S A

D D 2

g11•••, ~9!

nr ,`5E
1

2

P3~x,t !dx5S31S A

D D 2

g31•••, ~10!

where

S15
eU1 /D

11eU1 /D1eU2 /D
; S35

eU2 /D

11eU1 /D1eU2 /D
,

g152~11eU2 /D!; g352~S21S3!FS1

4
1Re~ f 11 f̄ 1!G ,

Re~ f 11 f̃ 1!52
11e2U2 /D

2e~U11U2!/D

H1
sin2~a2!sinh2~a2!

4H

H2
sinh2~a2!2sin2~a2!

4

,

~11!

H[
~11eU1 /D1eU2 /D!@sinh2~a1!1cos2~a1!#2

eU1 /D1eU2 /D

1
sinh2~a2!2sin2~a2!

4
; an[An2V

2D
.

Notice that for the dimensionless length,V andD have the
same dimensions.

If we assume, as shown in Fig. 1, that without an exter
field the left well has a lower barrier than the right we
U1,U2 , one can reverse the population with the help of
external periodic field. The latter will occur whennl ,`
.nr ,` , which can be rewritten as
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S32S1,S A

D D 2

~g12g3!. ~12!

For the latter equation, we can take the values ofg1,
g3 ,S1 andS3 from ~11! which gives

S A

D D 2 112eU2/D

eU2 /D2eU1 /DF2Re~ f 11 f̄ 1!2
S1

4 G.1. ~13!

The last inequality is obeyed when the factor in front
the brackets is large, and the expression in the bracke
positive. The former occurs whenA.AU22U1, and the lat-
ter holds for not-too-small frequencies. Notice that even i
is presumed thatU1,2/D,1, the relation betweenA and
U22U1 may be arbitrary.

Hence, we have obtained an interesting result: an exte
periodic force acting on the ‘‘shallow’’ well is able to trans
form it into the ‘‘deep’’ well. This result has been obtaine
analytically for a small periodic force and, consequen
only for very close minima. However, one can expect tha
stronger periodic signal would be able to reverse more
tant minima.

Another point of interest is the frequency dependence
second-order in the field correction term@proportional to
g1— see Eq.~9!#, which turns out to be nonmonotonic~Fig.
2!. Such nonmonotonic dependence of the population on
frequencyV of an external field has some resemblance to
appropriate quantum effect. Indeed, the quantum tunnelin
ev
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either enhanced or decreased~‘‘localization’’ ! depending on
the frequency of an external field@3#.

In conclusion, we found that a periodic signal tends
equalize the asymptotic populations of two levels, or even
transform a shallow level into a deep level. Moreover, t
populations turn out to be nonmonotonic functions of t
frequency of an external field so that fields of different fr
quencies can enhance or decrease transitions between
levels.

The phenomenon described above is somewhat simila
the ‘‘Kapitza pendulum’’ whose point of support oscillate
vertically, which stabilizes the vertically upward position@7#.

FIG. 2. Change of the left well population@divided by (A/D)2]
as a function of the dimensionless frequencyV/D, of an external
field given by Eq.~9!, for U1 /D51.0 andU2 /D51.3.
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