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Influence of a periodic field on two-level classical systems

V. Berdichevsky and M. Gitterman
Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel
(Received 18 September 1998

An external periodic field is able to change the asymptotic values of the populations of two asymmetric
energy levels in a bistable potential tending to equalize the populations of the discrete levels, or even to reverse
the populations for space-extended systems. The population of the oscillating well can either decrease or
increase compared with the field-free case, depending on the frequency of the external field.
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The investigation of nonlinear dynamical systems subject.e., n;..<n,. — the left “shallow” state contains fewer
to a periodic and/or random field has attracted considerablparticles than the right “deep” state. In E(R) we neglect
interest. Recent reviews describe different, quite complicatethe possible change of prefactors in exponentials due to
models and their applications to many physical, chemicalasymmetry.
and biological systemfgl—3]. In this Rapid Communication The influence of the external periodic field is usually de-
we consider discrete and space-extended two-level asymmederibed by the modulation of the potential well, i.8; is
ric systems where, in contrast to the usual approach, theeplaced byJ;+ A cost), andU,, by U,— A cosQt). We
probabilities of the transitions-+2 and 2-1 are different, accept this assumption hereafter.
i.e., in the absence of an external field, the two levels have Substituting the modulated barrier heights inside the rate
nonequal populations ds-x. equation(1), one concludes that, after a transient period, the

Although the effect of potential asymmetry on stochasticsolution of this equation becomes periodic in time:
resonance has been considered edifigrthe problem of the
changes in populations in the presence of an external field
remain unsolved, and this is the subject of our study. It turns
out that, in addition to periodic changes of the populations,
an external periodic field tends to equalize the populations of
the two levels ag—, stabilizing the lower “metastable”
level or even reversing the populations of these levels. More-
over, the populations are nonmonotonic functions of the fre- Substituting Eg. (3) and the expansion of
guency of the external field. exp(x£[Acost)]/D) in a series of modified Bessel functions

The simplest model of a system that can be found eitheef the first kind[4] into Eq. (1), one can find recursive rela-
in the “left” (populationn,), or in the “right” (population tions forn, ., Ay, andB,, as has been done for similar
n,) states, where,+n,=1, has many applications in sci- problems[5,6]. Truncating the recursive relations at
ence, and has been considered repeatedly in the literature.0,12..., oneobtains a set of coefficients in E¢) that
Our approach is close to that of Ref§,6] with the essential  corresponds to increasing powers &{ D), i.e., of the am-
difference lying in the assumption that, say, the left state ilitude of the external field. Omitting the straightforward cal-
less stable, i.e., the potential barrigy for transmission to culations, one finds the following results to the lowest order
the right state is lower thak), for the reverse transition, in the field amplitude, i.e., to first order féy; andB,, and to
U;<U.,. second order fon . :

The rate equation describing the dynamics of a two-state

Ny=ny..+ >, [AncogmQt)+BsinfmQt)]
m

=ny.+ >, VAL+BZsinmOt+ ). 3

system has the following form: w3 . A? wawg wo—-wi
nlym: s ]
dn,  dn, WO+W D2 Q2+ (WO+W3)2 W+ W)
Wz - W=W2n2_W1n1=W2_(W1+W2)n1, (1) (4)
2AWEWS

\/Az—i— BZ= .
whereW;,y is the transition rate out of state(2), and is LT DOWSH W[ Q2+ (W WB)2] Y2
assumed to have the simple Arrhenius form.

In the absence of an external field, one finds tferco,

when the initial conditions are washed out

In all previous analyseg[5,6] and otherg two stable
states W)=W53) have been considered and the limiting (
—) values ofny ., ,n,. did not change in the presence of
w3 W an external periodic field. The only influence of this field was

W+ W3 Wi +W;
3]

Wo=g~ (U/D):  \\R=g~ (Uz/D)
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to produce a periodic change of the population of the two
states described by the coefficiedts andB,, in Eq. (3).

As one can see from E(4), in the presence of a field, the
field-free expression fon, ., is augmented by an additional
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Uy We keep only the lowest nonvanishing corrections to the

field-free asymptotic probabilitieS,, in the amplitude of the
1 2 external field. Due to the boundary conditions, to the first
’ order in the field, the time-independent corrections vanish,
and so we also keep the nonoscillating second-order terms in

FIG. 1. Square double-well potential with an oscillating left (A/D). An expansion of ex@:[A cos(2t)}/D) up to first

well. order in (A/D) will influence only thek=1 terms in Eq(7),

which take the following form
positive term(sincevv(1’>vvg). One can show that more posi-

tive terms will come from the next-order corrections in _ A X s Ot A\?

(A/D). Thus, one finds that the less stable state becomes Pm=Sn+ 5[(fme +ine M)e e+ D Im-
“more stable” in the presence of an external periodic field. )

In fact, this field not only equalizes the populations of the

two states; under some circumstandese below; it can Equation  (8)  contains  twelve  parameters
even reverse them. (S fm:fmOm; M=1,2,3) that satisfy twelve equations

The second conclusion, which follows from E@), is  [two on the wells and two on each of two boundaries for
that the amplitude of the oscillationé\f+B2)Y2 is mono-  each order in the small paramete&/D)]. We will present
tonic as a function of the external field frequen@y but the full solution elsewhere. Here we restrict our consider-
nonmonotonic as a function of the noise strerptfstochas- ation to the time-independent populatidnp to the second
tic resonanc¢?2]). order in (A/D)?] of the right Ny .., and the lefi(oscillating,

We now turn to space-extended systems and, as an ex- .., wells:
ample, consider a particle moving in the piecewise double- '
well potentialU(x) under the influence of white noise. In 0 A
addition, we assume that the left well is subject to an exter- n|,oc=J' Pi(x,t)dx= 51+(5
nal periodic field, as shown in Fig. 1, where the length is -t
expressed in arbitrary units. ) A

The Fokker-PIgnck equathn fqr the probablllty fu_nctlon n, ”’:J’ Pa(x,t)dx= 33+
P(x,t) for the positionx of a diffusive particle at the timée '
is

2
g1t ©)

2
gzt (10

where

(5) eU1/D eU2/D

P (U . (?P_ 3J
gt ax\ ax IX X’

= ; 532 ,
. . . . + U1/D+ U,/D + U1/D+ U, /D
where the probability curreritis defined in Eq(5). 1+e e 1+e e

For the potentials) (x) shown in Fig. 1, everywere except

at matching pointsgU/dx=0 and Eq.(5) reduces to a —(1+eY2/P); g;= _(52+s3) +Re(f +f1)
simple diffusion equation. Moreover, our choice for the pe-

riodic signal does not introduce an additional force in Eq. _ _

(5), which still maintains the form of a simple diffusion o sinf(ay)sintf(ay)
equation. However, the periodic signal enters the matching ~ 1+e Y2/D 4H
conditions, namely, one has to solve Eﬁ)..m gach region of Re(f +fy)= 2(U1+Up)ID sintf(a,) —sirk(a,) ’
U(x)= const, and then ensure the continuity®findJ on — 7

the boundaries of these regions. The matching conditions (11)

have to be complemented by reflected boundary conditions
at the walls.

Our main assumption is the smallness of the amplitude of H=
the external field, which mean#\(D)<1, and accordingly
we seek the solution of E@5) in each regiorm as

(1+eY1/P+eY2/P)[sintt(a,) + cos(ay)]?
eU1/D | gUp/D

sintf(a,) —sif(a,) [n°Q
+ 1 , ap= ﬁ

Notice that for the dimensionless length,andD have the
same dimensions.

If we assume, as shown in Fig. 1, that without an external
field the left well has a lower barrier than the right well,
U,<U,, one can reverse the population with the help of an
fO=fD+ > [(f) e +FD) e ) el Kt ¢ e, external periodic field. The latter will occur when, .,

k=1 ’ ’ >n, ., which can be rewritten as
(7

sm+2 ( ) fx,0), (6)

wheret{)) is a periodic function of, which can be written in
the following form:



RAPID COMMUNICATIONS

PRE 59 INFLUENCE OF A PERIODIC FIELD ON TWO-LEVE . .. R11
A\? DY
$=Si<| 5 (91~ 0s)- (12 (&)m-
0.01 1

For the latter equation, we can take the valuesgef
03,S; andS; from (11) which gives

A)2 1+2eY2P

_ 5
D/ gUa2/D_gUy/D _Re(fl+f1)_z

>1. (13
—e

The last inequality is obeyed when the factor in front of | |
the brackets is large, and the expression in the brackets i 0 5 ) 10 12 0
positive. The former occurs whex>U,—U,, and the lat-
ter holds for not-too-small frequencieg. Notice that even ifit -~ 5 Change of the left well populatiddivided by (A/D)?]
is presumed that 11_2/D<1' the relation betweenA and as a function of the dimensionless frequereiD, of an external
U,—U, may be arbitrary. _ _ field given by Eq.(9), for U;/D=1.0 andU,/D=1.3.

Hence, we have obtained an interesting result: an external
periodic force acting on the “shallow” well is able to trans- either enhanced or decreaggtbcalization”) depending on
form it into the “deep” well. This result has been obtained the frequency of an external fie[8].
analytically for a small periodic force and, consequently, In conclusion, we found that a periodic signal tends to
only for very close minima. However, one can expect that aequalize the asymptotic populations of two levels, or even to
stronger periodic signal would be able to reverse more distransform a shallow level into a deep level. Moreover, the
tant minima. populations turn out to be nonmonotonic functions of the

Another point of interest is the frequency dependence ofrequency of an external field so that fields of different fre-
second-order in the field correction terfproportional to  quencies can enhance or decrease transitions between two
g:— see Eq(9)], which turns out to be nonmonoton(Eig. levels.

2). Such nonmonotonic dependence of the population on the The phenomenon described above is somewnhat similar to
frequency() of an external field has some resemblance to thehe “Kapitza pendulum” whose point of support oscillates
appropriate quantum effect. Indeed, the quantum tunneling igertically, which stabilizes the vertically upward positiof.
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